Möbius inversion formula for monoids with zero
نویسندگان
چکیده
The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for instance. In this contribution are developed and used some topological and algebraic notions for monoids with zero, similar to ordinary objects such as the (total) algebra of a monoid, the augmentation ideal or the star operation on proper series. The main concern is to extend the study of the Möbius function to some monoids with zero, i.e., with an absorbing element, in particular the so-called Rees quotients of locally finite monoids. Some relations between the Möbius functions of a monoid and its Rees quotient are also provided. Résumé. La formule d’inversion de Möbius, connue depuis le XIXème siècle en théorie des nombres, fut généralisée à la classe des monoı̈des localement finis, comprenant des objets tels que les monoı̈des partiellement commutatifs libres ainsi que les monoı̈des plaxiques et hypoplaxiques par exemple. Dans ce papier nous étendons son étude à certains monoı̈des à zéro, i.e., munis d’un élément absorbant, notamment les quotients de Rees de monoı̈des localement finis, en développant et en employant des outils, algébriques et topologiques, analogues aux objets usuels tels que l’algèbre (large) d’un monoı̈de, l’idéal d’augmentation ou encore l’étoile d’une série sans terme constant. Nous établissons également des relations entre les fonctions de Möbius d’un monoı̈de et de son quotient de Rees.
منابع مشابه
Some Applications of the Möbius Function
The Möbius function is an important concept in combinatorics. First developed for number theory, it has since been extended to arbitrary posets, where it allows inversion of certain functions. One type of poset of particular interest is the subgroup lattice of a finite group. In this paper, we examine some fundamental results about the Möbius function, including the powerful inversion formula, ...
متن کاملEnumerative Combinatorics 9: Möbius inversion
In this section we will discuss the Inclusion-Exclusion principle, with a few applications (including a formula for the chromatic polynomial of a graph), and then consider a wide generalisation of it due to Gian-Carlo Rota, involving the Möbius function of a partially ordered set. The q-binomial theorem gives a simple formula for the Möbius function of the lattice of subspaces of a vector space.
متن کاملOn Regularity of Acts
In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...
متن کاملOn the Representation Theory of Finite J -trivial Monoids
In 1979, Norton showed that the representation theory of the 0-Hecke algebra admits a rich combinatorial description. Her constructions rely heavily on some triangularity property of the product, but do not use explicitly that the 0-Hecke algebra is a monoid algebra. The thesis of this paper is that considering the general setting of monoids admitting such a triangularity, namely J -trivial mon...
متن کاملThe Möbius transform on symmetric ordered structures and its application to capacities on finite sets
Considering a linearly ordered set, we introduce its symmetric version, and endow it with two operations extending supremum and infimum, so as to obtain an algebraic structure close to a commutative ring. We show that imposing symmetry necessarily entails non associativity, hence computing rules are defined in order to deal with non associativity. We study in details computing rules, which we e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0911.4821 شماره
صفحات -
تاریخ انتشار 2009